If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+4u-15=0
a = 3; b = 4; c = -15;
Δ = b2-4ac
Δ = 42-4·3·(-15)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-14}{2*3}=\frac{-18}{6} =-3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+14}{2*3}=\frac{10}{6} =1+2/3 $
| -3u^2+4u-15=0 | | 3x-9=-×+7 | | 5(2x+1)=8x+1 | | 3+x=3x+25 | | 3^{5x}=243 | | 2x+7=-8x-9=10x | | 2/3(1/2x-5)=x+1-6-3 | | 4z+3+3z=5 | | 12-6-(-1))=12-6-x | | 9x–6=51 | | 4z+3 +3z=5 | | 8+x=14–2x | | 7x+4x-2=35 | | 217-b=b-217 | | 2^2n-1=128 | | 217+b=b+217 | | x+5x+(4x-4)=180 | | -4x-6=-7x-21 | | 60x+50=170 | | 1234+3015=2y+1001 | | 1234+3015=2y+10001 | | 5x-4x-4=180 | | 5=g-14 | | 35+-10x+75x=210 | | 5x+4x-4+x=180 | | 130+33+x=180 | | 5g=-14 | | -4x-5=2x+31 | | e/5=-2 | | x+57+50=180 | | 6(t+15)=12t | | s(-4)=-8 |